La manera extraña de un promedio móvil hurones la tendencia de una masa de mediciones confusas se puede ver mediante el trazado de la media móvil de 10 días junto con el peso diario original, que se muestra como pequeños diamantes. Los promedios móviles que usamos hasta ahora dan igual significación a todos los días en el promedio. Esto no es necesario. Si piensa en ello, no tiene mucho sentido, especialmente si está interesado en usar un promedio móvil a largo plazo para suavizar los golpes aleatorios en la tendencia. Supongamos que está utilizando una media móvil de 20 días. ¿Por qué debería su peso hace casi tres semanas ser considerado igualmente relevante para la tendencia actual como su peso esta mañana? Se han desarrollado varias formas de medias móviles ponderadas para abordar esta objeción. En lugar de simplemente sumar las mediciones para una secuencia de días y dividir por el número de días, en un promedio móvil ponderado cada medida se multiplica primero por un factor de peso que difiere de día a día. La suma final se divide, no por el número de días, sino por la suma de todos los factores de peso. Si se utilizan factores de peso mayores para los días más recientes y factores más pequeños para mediciones más atrás en el tiempo, la tendencia será más sensible a los cambios recientes sin sacrificar el suavizado que proporciona un promedio móvil. Un promedio móvil no ponderado es simplemente un promedio móvil ponderado con todos los factores de peso igual a 1. Puede utilizar cualquier factor de peso que le guste, pero un conjunto particular con el jawbreaking monicker Exponentially Smoothed Moving Average ha demostrado ser útil en aplicaciones que van desde radar de defensa aérea Al comercio del mercado de vientre de cerdo de Chicago. Vamos a ponerlo a trabajar en nuestros vientres también. Este gráfico compara los factores de peso para una media móvil movida exponencialmente de 20 días con una media móvil simple que pesa todos los días igualmente. El suavizado exponencial da a la medida de hoy dos veces la significación que el promedio simple le asignaría, la medida de ayer un poco menos que eso, y cada día sucesivo menos que su predecesor con el día 20 contribuyendo sólo 20 tanto al resultado como a una media móvil simple. Los factores de peso en una media móvil móvil suavizada exponencialmente son potencias sucesivas de un número llamado constante de suavizado. Un promedio móvil suavizado exponencialmente con una constante de suavizado de 1 es idéntico a un promedio móvil simple, ya que 1 a cualquier potencia es 1. Las constantes de suavización menores que 1 pesan los datos recientes más pesadamente, con el sesgo hacia las mediciones más recientes aumentando a medida que el suavizado La constante disminuye hacia cero. Si la constante de suavizado es superior a 1, los datos más antiguos se ponderan más intensamente que las mediciones recientes. Esta gráfica muestra los factores de peso que resultan de diferentes valores de la constante de suavizado. Observe cómo los factores de peso son todos 1 cuando la constante de suavizado es 1. Cuando la constante de suavizado está entre 0,5 y 0,9, el peso dado a los datos antiguos cae tan rápidamente comparado con mediciones más recientes que no hay necesidad de restringir la media móvil a Un número específico de días podemos promedio de todos los datos que tenemos, desde el principio, y dejar que los factores de peso calculado a partir de la constante de suavizado automáticamente descartar los datos antiguos, ya que se convierte en irrelevante a la tendencia actual. Una media móvil exponencialmente suavizada Es una media móvil ponderada en la que los factores de peso son potencias de S. La constante de suavizado. Se calcula una media móvil exponencialmente suavizada sobre todos los datos acumulados hasta ahora en lugar de cortarse después de algunos días. Para el día d la media móvil exponencialmente suavizada es: Pero esto es sólo una secuencia geométrica El siguiente término en una secuencia de este tipo viene dado por: A d (1- S) M d SA d -1. El cálculo se acelera y la comprensión sirve si sustituimos: P 1-S por S en la ecuación para el siguiente término. Haciendo un pequeño álgebra, descubrimos: Esta reformulación hace que la operación de suavizado sea muy intuitiva. Cada día, tomamos la antigua tendencia número A d -1. Calcular la diferencia entre ella y la medida de hoy M d. Entonces agregue un porcentaje de esa diferencia P al valor de tendencia antiguo obtenga el nuevo. Obviamente, cuanto más cerca está P de 1 (y por lo tanto, cuanto más cerca está de S), más influencia tiene la nueva medición sobre la tendencia. Si P 1, el antiguo valor de tendencia A d -1 se cancela y la media móvil rastrea los datos con precisión. Por ejemplo, con la constante de suavizado S 0.9 que usamos en los datos de peso, calculamos el nuevo valor de tendencia A d del valor de tendencia anterior A d -1 y el peso de hoy M d como: En discusiones de promedios móviles suavizados exponencialmente, Aplicaciones, tenga cuidado de confundir la constante de suavizado S con la forma de variante P1-S introducida para simplificar el cálculo y hacer más evidente el efecto de los nuevos datos sobre el promedio móvil. P se refiere a menudo como el porcentaje de suavizado que el término 10 suavizante se refiere a un cálculo en el que P 10 / 1000.1 y, por tanto, S 0.9.Moving Average El Indicador Técnico de Media Móvil muestra el valor medio del precio del instrumento durante un cierto período de tiempo. Cuando se calcula la media móvil, se calcula la media del precio del instrumento para este período de tiempo. A medida que el precio cambia, su promedio móvil aumenta o disminuye. Hay cuatro tipos diferentes de promedios móviles: Simple (también conocido como Aritmética), Exponencial. Suavizado y ponderado. El Promedio móvil puede calcularse para cualquier conjunto de datos secuenciales, incluyendo precios de apertura y cierre, precios más altos y más bajos, volumen de operaciones o cualquier otro indicador. A menudo es el caso cuando se usan promedios móviles dobles. Lo único en que los promedios móviles de diferentes tipos divergen considerablemente entre sí, es cuando los coeficientes de peso, que se asignan a los últimos datos, son diferentes. En el caso de que estamos hablando de Media móvil simple. Todos los precios del período de tiempo en cuestión son iguales en valor. La media móvil exponencial y la media móvil ponderada lineal atribuyen más valor a los precios más recientes. La forma más común de interpretar el precio promedio móvil es comparar su dinámica con la acción del precio. Cuando el precio del instrumento sube por encima de su promedio móvil, aparece una señal de compra, si el precio cae por debajo de su media móvil, lo que tenemos es una señal de venta. Este sistema de comercio, que se basa en la media móvil, no está diseñado para proporcionar la entrada en el mercado justo en su punto más bajo, y su salida a la derecha en el pico. Permite actuar de acuerdo con la siguiente tendencia: comprar poco después de que los precios lleguen al fondo, y vender poco después de que los precios hayan alcanzado su punto máximo. Los promedios móviles también pueden aplicarse a los indicadores. Es ahí donde la interpretación de las medias móviles de los indicadores es similar a la interpretación de los promedios móviles de los precios: si el indicador sube por encima de su media móvil, es probable que continúe el movimiento del indicador ascendente: si el indicador cae por debajo de su promedio móvil, Significa que es probable que siga bajando. Estos son los tipos de promedios móviles en el gráfico: Promedio móvil simple (SMA) Promedio móvil exponencial (EMA) Promedio móvil suavizado (SMMA) Promedio móvil ponderado lineal (LWMA) Puede probar las señales comerciales de este indicador creando un Asesor experto En MQL5 Asistente. Cálculo Promedio móvil simple (SMA) Simple, en otras palabras, el promedio móvil aritmético se calcula sumando los precios del cierre del instrumento durante un cierto número de períodos individuales (por ejemplo, 12 horas). Este valor se divide entonces por el número de tales períodos. SMA SUM (CERRAR (i), N) / N SUM SUM CERRAR (i) período actual precio de cierre N número de períodos de cálculo. Promedio móvil exponencial (EMA) La media móvil suavizada exponencialmente se calcula sumando una cuota determinada del precio de cierre actual al valor anterior de la media móvil. Con promedios móviles suavizados exponencialmente, los últimos precios de cierre son de mayor valor. La media móvil exponencial del P por ciento se verá así: EMA (CERRAR (i) P) (EMA (i - 1) (1 - P)) CERRAR (i) De un período anterior P el porcentaje de utilización del valor del precio. Promedio móvil suavizado (SMMA) El primer valor de esta media móvil suavizada se calcula como la media móvil simple (SMA): SUM1 SUM (CLOSE (i), N) La segunda media móvil se calcula de acuerdo con esta fórmula: SMMA (i) (I) (N) () () () () NMA (i - 1) ) / N SUM sum SUM1 suma total de los precios de cierre para N periodos se cuenta desde la barra anterior PREVSUM suma suavizada de la barra anterior SMMA (i-1) media móvil suavizada de la barra anterior SMMA (i) media móvil suavizada de la barra Barra actual (excepto la primera) CERRAR (i) precio de cierre actual N período de suavizado. Después de conversiones aritméticas, la fórmula puede simplificarse: SMMA (i) (SMMA (i - 1) (N - 1) CERRAR (i)) / N Promedio móvil ponderado lineal (LWMA) En el caso de la media móvil ponderada, Tiene más valor que los datos más antiguos. La media móvil ponderada se calcula multiplicando cada uno de los precios de cierre dentro de la serie considerada por un cierto coeficiente de ponderación: LWMA SUM (CLOSE (i) i, N) Suma (i, N) suma total de los coeficientes de peso N período de suavizado. Medias móviles ponderadas: lo básico Durante años, los técnicos han encontrado dos problemas con la media móvil simple. El primer problema radica en el marco temporal del promedio móvil (MA). La mayoría de los analistas técnicos creen que la acción de los precios. El precio de la acción de apertura o cierre, no es suficiente de lo que depender para predecir adecuadamente las señales de compra o venta de la acción de cruce del MA. Para resolver este problema, los analistas asignan ahora más peso a los datos de precios más recientes utilizando el promedio móvil con suavidad exponencial (EMA). Por ejemplo, usando un MA de 10 días, un analista tomaría el precio de cierre del décimo día y multiplicaría este número por 10, el noveno día por nueve, el octavo Día por ocho y así sucesivamente a la primera de la MA. Una vez que se ha determinado el total, el analista dividirá el número por la adición de los multiplicadores. Si agrega los multiplicadores del ejemplo de MA de 10 días, el número es 55. Este indicador se conoce como el promedio móvil ponderado linealmente. (Para la lectura relacionada, echa un vistazo a los promedios móviles simples hacen que las tendencias se destacan.) Muchos técnicos son creyentes firmes en el promedio móvil exponencialmente suavizado (EMA). Este indicador se ha explicado de muchas maneras diferentes que confunde tanto a los estudiantes como a los inversores. Tal vez la mejor explicación viene de John J. Murphys Análisis Técnico de los Mercados Financieros, (publicado por el Instituto de Nueva York de Finanzas, 1999): El exponencialmente suavizado media móvil se ocupa de los dos problemas asociados con el promedio móvil simple. En primer lugar, el promedio suavizado exponencial asigna un mayor peso a los datos más recientes. Por lo tanto, es una media móvil ponderada. Pero si bien asigna menor importancia a los datos de precios pasados, incluye en su cálculo todos los datos en la vida útil del instrumento. Además, el usuario puede ajustar la ponderación para dar mayor o menor peso al precio de los días más recientes, que se añade a un porcentaje del valor de días anteriores. La suma de ambos valores porcentuales se suma a 100. Por ejemplo, el precio de los últimos días se podría asignar un peso de 10 (.10), que se agrega a los días anteriores peso de 90 (.90). Esto da el último día 10 de la ponderación total. Esto sería el equivalente a un promedio de 20 días, al dar al precio de los últimos días un valor menor de 5 (0,05). Figura 1: Promedio móvil suavizado exponencial El gráfico anterior muestra el índice Nasdaq Composite desde la primera semana de agosto de 2000 hasta el 1 de junio de 2001. Como puede ver claramente, la EMA, que en este caso está usando los datos de cierre de precios en un De nueve días, tiene señales de venta definitiva el 8 de septiembre (marcado por una flecha negra hacia abajo). Este fue el día en que el índice se rompió por debajo del nivel de los 4.000. La segunda flecha negra muestra otra pierna abajo que los técnicos esperaban. El Nasdaq no pudo generar suficiente volumen e interés de los inversores minoristas para romper la marca de 3.000. Luego se zambulló de nuevo hasta el fondo en 1619.58 el 4 de abril. La tendencia alcista del 12 de abril está marcada por una flecha. Aquí el índice cerró en 1,961.46, y los técnicos comenzaron a ver a los gestores de fondos institucionales comenzando a recoger algunos negocios como Cisco, Microsoft y algunos de los temas relacionados con la energía. (Lea nuestros artículos relacionados: Sobres de media móvil: Refinación de una herramienta de comercio popular y Bounce Media móvil). Una persona que negocia derivados, materias primas, bonos, acciones o monedas con un riesgo superior al promedio a cambio de. QuotHINTquot es un acrónimo que representa para el ingreso quothigh no taxes. quot Se aplica a los altos ingresos que evitan el pago de ingresos federales. Un creador de mercado que compra y vende bonos corporativos de muy corto plazo denominados papel comercial. Un distribuidor de papel es normalmente. La compra sin restricciones y la venta de bienes y servicios entre países sin la imposición de restricciones tales como. Cómo calcular los promedios móviles ponderados en Excel utilizando suavizado exponencial Excel Extrusión de datos para Dummies, 2ª Edición La herramienta de suavizado exponencial en Excel calcula el promedio móvil. Sin embargo, el suavizado exponencial pesa los valores incluidos en los cálculos del promedio móvil de modo que los valores más recientes tengan un mayor efecto en el cálculo promedio y los valores antiguos tengan un efecto menor. Esta ponderación se realiza a través de una constante de suavizado. Para ilustrar cómo funciona la herramienta Exponential Smoothing, supongamos que vuelve a examinar la información diaria promedio sobre la temperatura. Para calcular las medias móviles ponderadas usando el suavizado exponencial, realice los siguientes pasos: Para calcular una media móvil suavizada exponencialmente, primero haga clic en el botón de comando Análisis de datos de la barra de datos. Cuando Excel muestra el cuadro de diálogo Análisis de datos, seleccione el elemento Exponential Smoothing de la lista y, a continuación, haga clic en Aceptar. Excel muestra el cuadro de diálogo Exponential Smoothing. Identificar los datos. Para identificar los datos para los que desea calcular un promedio móvil exponencialmente suavizado, haga clic en el cuadro de texto Rango de entrada. A continuación, identifique el rango de entrada, ya sea escribiendo una dirección de intervalo de hoja de cálculo o seleccionando el intervalo de hoja de cálculo. Si su rango de entrada incluye una etiqueta de texto para identificar o describir sus datos, active la casilla de verificación Etiquetas. Proporcione la constante de suavizado. Introduzca el valor de la constante de suavizado en el cuadro de texto Factor de amortiguación. El archivo de Ayuda de Excel sugiere que utilice una constante de suavizado de entre 0,2 y 0,3. Sin embargo, presumiblemente, si usa esta herramienta, tiene sus propias ideas acerca de cuál es la constante de suavizado correcta. (Si usted no tiene ni idea acerca de la constante de suavizado, quizás no debería usar esta herramienta.) Dígale a Excel dónde colocar los datos de promedio móvil suavizado exponencialmente. Utilice el cuadro de texto Rango de salida para identificar el rango de hoja de cálculo en el que desea colocar los datos del promedio móvil. En el ejemplo de la hoja de cálculo, por ejemplo, coloque los datos del promedio móvil en el rango de hoja de cálculo B2: B10. (Opcional) Diagrama los datos suavizados exponencialmente. Para graficar los datos exponencialmente suavizados, seleccione la casilla de verificación Salida del gráfico. (Opcional) Indica que desea que se calcula la información de error estándar. Para calcular los errores estándar, seleccione la casilla de verificación Estándar Errores. Excel sitúa los valores de error estándar junto a los valores de la media móvil exponencialmente suavizados. Una vez que haya terminado de especificar qué información de media móvil desea calcular y dónde desea colocarla, haga clic en Aceptar. Excel calcula la información del promedio móvil.
No comments:
Post a Comment